\(x+\sqrt{x}+\sqrt{x+3}+\sqrt{x^2+3x}=6\left(đk:x\ge0\right)\)
\(\Leftrightarrow x+\sqrt{x}+\sqrt{x+3}+\sqrt{x\left(x+3\right)}=6\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}+1\right)+\sqrt{x+3}\left(\sqrt{x}+1\right)=6\)
\(\Leftrightarrow\left(\sqrt{x}+1\right)\left(\sqrt{x}+\sqrt{x+3}\right)=6\)
Do \(x\ge0\Leftrightarrow\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+\sqrt{x+3}\ge\sqrt{x}+\sqrt{3}\ge\sqrt{x}+1>0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}+1=2\\\sqrt{x}+\sqrt{x+3}=3\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}+1=1\\\sqrt{x}+\sqrt{x+3}=6\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\\left\{{}\begin{matrix}x=0\\\sqrt{x}+\sqrt{x+3}=6\left(VLý\right)\end{matrix}\right.\end{matrix}\right.\)
Vậy \(S=\left\{1\right\}\)