Tìm số đo góc nhọn x:
a) \(4\sin x-1=1\)
b) \(2\sqrt{3}-3\tan x=\sqrt{3}\)
c) \(7\sin-3\cos\left(90^o-x\right)=2,5\)
d) \(\left(2\sin-\sqrt{2}\right)\left(4\cos-5\right)=0\)
e) \(\dfrac{1}{\cos^2x}-\tan x=1\)
f) \(\cos^2x-3\sin^2x=0,19\)
CM \(\left(\frac{\sqrt{1+sinx}}{\sqrt{1-sinx}}-\frac{\sqrt{1-sinx}}{\sqrt{1+sinx}}\right)^2\) = \(4tan^2x\)
1. Tìm tọa độ giao điểm 2 đường thẳng: y = 3x + 2 và y = 2x - 3
2. Tìm m để 3 đường thẳng y = 3x + 2 ; y = 2x - 3; y = (m - 2)x + 3 - m đồng quy
Chung min:
a,\(cot^2x.tan^2x+2sinx^{ }.cosx=\left(sinx+cosx\right)^2\)
b,\(sin^4x+cos^4x=1-2sin^2x.cos^2x\)
don gian bieu thuc sau
\(\left(1-cosx\right)\left(1+cosx\right)-sin^2x\)
rút gọn biểu thức sau
a. \(\sqrt{\left(\sqrt{3}-1\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
b. \(\sqrt{\left(\sqrt{2}+5\right)^2}-\sqrt{\left(\sqrt{2}-5\right)^2}\)
c. \(\sqrt{7+2\sqrt{10}-\sqrt{7-2\sqrt{10}}}\)
d. \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
Cho biểu thức \(P=\left(\sqrt{x}-\dfrac{x+2}{\sqrt{x}+1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}+1}-\dfrac{\sqrt{x}-4}{1-x}\right)\);\(x\ge0,x\ne1,x\ne4.\)
a) Rút gọn biểu thức P.
b) Tìm giá trị của x để |P| > P
c) Tìm số nguyên x lớn nhất thỏa mãn P < \(\dfrac{1}{2}\)
d) Tìm giá trị nhỏ nhất của biểu thức P.
e) Tìm giá trị nhỏ nhất của biểu thức \(Q=P.\left(2\sqrt{x}+x\right)\)
Câu 40: Cho góc nhọn có số đo \(x=\dfrac{1}{2}\) và \(F=tan^2x-sin^2x.tan^2x\). Giá trị của \(F\) bằng?
Cho \(A=\dfrac{x}{x-4}+\dfrac{1}{\sqrt{x}-2}+\dfrac{1}{\sqrt{x}+2}\left(x\ge0,x\ne4\right)\) số giá trị nguyên của x để biểu thức A nhận giá trị nguyên là?