a: \(\Leftrightarrow\left(\left|x\right|\right)^2-5\left|x\right|-6=0\)
\(\Leftrightarrow\left(\left|x\right|-6\right)\left(\left|x\right|+1\right)=0\)
\(\Leftrightarrow\left|x\right|-6=0\)
=>x=6 hoặc x=-6
b: \(\dfrac{x}{x-2}+\dfrac{5}{\left|x+2\right|}=1\)
Trường hợp 1: x>-2 và x<>2
Pt sẽ là \(\dfrac{x}{x-2}+\dfrac{5}{x+2}=1\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)+5\left(x-2\right)\)
\(\Leftrightarrow x^2+2x+5x-10=x^2-4\)
=>7x=6
hay x=6/7(nhận)
TRường hợp 2: x<-2
Pt sẽ là \(\dfrac{x}{x-2}-\dfrac{5}{x+2}=1\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)-5\left(x-2\right)\)
\(\Leftrightarrow x^2+2x-5x+10=x^2-4\)
=>-3x=-14
hay x=14/3(loại)