Đặt \(x-2009=y\) khi đó phương trình trở thành:
\(\dfrac{y^2-y\left(y-1\right)+\left(y-1\right)^2}{y^2+y\left(y-1\right)+\left(y-1\right)^2}=\dfrac{19}{49}\)
\(\Leftrightarrow4y^2-4y-15=0\)
\(\Leftrightarrow\left(2y-5\right)\left(2y+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2,5\\y=-1,5\end{matrix}\right.\)
Đổi lại:\(y=x-2009\) ,ta được:
\(\left[{}\begin{matrix}x=2009+2,5=2011,5\\x=2009-1,5=2007,5\end{matrix}\right.\)
Vậy...