Đặt \(\sqrt{2x^2+7x+10}=a;\sqrt{2x^2+x+4}=b\left(a,b>0\right)\)
pt <=> a + b = 3(x + 1)
Mà a2 - b2 = 2x2 + 7x + 10 - 2x2 - x - 4 = 6x + 6
nên pt <=> a + b = \(\dfrac{a^2-b^2}{2}\)
<=> (a - b)(a + b) = 2(a + b)
Vì a;b > 0 nên a + b khác 0. Chia cả 2 vế của pt cho a + b ta có
pt <=> a - b = 2
<=> \(\sqrt{2x^2+7x+10}-\sqrt{2x^2+x+4}=2\)
<=> \(\sqrt{2x^2+7x+10}=2+\sqrt{2x^2+x+4}\)
Bình phương 2 vế ta có:
pt <=> \(2x^2+7x+10=2x^2+x+8+8\sqrt{2x^2+x+4}\)
<=> \(3x+1=4\sqrt{2x^2+x+4}\)
Bình phương lần nữa rồi làm nốt, làm xong thì thử lại.