`(x/(x+1))^2+(x/(x-1))^2=90(x ne -1,1)`
`<=>x^2/(x+1)^2+x^2/(x-1)^2=90`
`<=>x^2(x-1)^2+x^2(x-1)^2=90(x^2-1)^2`
`<=>x^2(2x^2+2)=90(x^4-2x^2+1)`
`<=>2x^4+2x^2=90x^4-180x^2+90`
`<=>88x^4-182x^2+90=0`
`<=>88x^4-110x^2-72x^2+90=0`
`<=>22x^2(4x^2-5)-18(4x^2-5)=0`
`<=>(4x^2-5)(22x^2-18)=0`
`<=>(4x^2-5)(11x^2-9)=0`
`<=>` $\left[ \begin{array}{l}4x^2=5\\11x^2=9\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=\sqrt{\dfrac{5}{4}}\\x=-\sqrt{\dfrac{5}{4}}\\x=\sqrt{\dfrac{9}{11}}\\x=-\sqrt{\dfrac{9}{11}}\end{array} \right.$
Vậy `S={\sqrt{9/11},-\sqrt{9/11},\sqrt{5/4},-\sqrt{5/4}}`
\(\left(\dfrac{x}{x+1}\right)^2+\left(\dfrac{x}{x-1}\right)^2=90\)
\(\Leftrightarrow\dfrac{x^2}{\left(x+1\right)^2}+\dfrac{x^2}{\left(x-1\right)^2}=90\)
\(\Leftrightarrow\dfrac{x^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}+\dfrac{x^2\left(x+1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}=90\)
\(\Leftrightarrow\dfrac{x^2\left(x-1\right)^2+x^2\left(x+1\right)^2-90\left(x-1\right)^2\left(x+1\right)^2}{\left(x+1\right)^2\left(x-1\right)^2}=0\)
\(\Rightarrow x^2\left(x^2-2x+1\right)+x^2\left(x^2+2x+1\right)-90\left(x^2-1\right)^2=0\)
\(\Leftrightarrow x^4-2x^3+x^2+x^4+2x^3+x^2-90x^4+90x^2-90=0\)
\(\Leftrightarrow-88x^4+92x^2-90=0\)
\(\left(\dfrac{x}{x+1}\right)^2+\left(\dfrac{x}{x-1}\right)^2+\dfrac{2x^2}{x^2-1}-\dfrac{2x^2}{x^2-1}=90\)
\(\Leftrightarrow\left(\dfrac{x}{x+1}+\dfrac{x}{x-1}\right)^2-\dfrac{2x^2}{x^2-1}=90\)
\(\Leftrightarrow\left(\dfrac{2x^2}{x^2-1}\right)^2-\dfrac{2x^2}{x^2-1}-90=0\)
Đặt \(\dfrac{2x^2}{x^2-1}=t\Rightarrow t^2-t-90=0\Rightarrow\left[{}\begin{matrix}t=10\\t=-9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2x^2}{x^2-1}=10\\\dfrac{2x^2}{x^2-1}=-9\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4x^2=5\\11x^2=9\end{matrix}\right.\)
\(\Leftrightarrow...\)