Bài 5: Phương trình chứa ẩn ở mẫu

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đinh Cẩm Tú

Giải phương trình:

\(\dfrac{3x-1}{x-1}\) - \(\dfrac{2x+5}{x+3}\) + \(\dfrac{4}{x^2+2x-3}\) = 1

Yeutoanhoc
27 tháng 2 2021 lúc 19:45

`(3x-1)/(x-1)-(2x+5)/(x+3)+4/(x^2+2x-3)=1(x ne 1,-3)`

`<=>((3x-1)(x+3))/(x^2+2x-3)-((2x+5)(x-1))/(x^2+2x-3)+4/(x^2+2x-3)=(x^2+2x-3)/(x^2+2x-3)`

`<=>(3x-1)(x+3)-(2x+5)(x-1)+4=x^2+2x-3`

`<=>3x^2+8x-3-2x^2-3x+5+4=x^2+2x-3`

`<=>x^2+5x+6=x^2+2x-3`

`<=>3x=-9`

`<=>x=-3(loại)`

Vậy `S={cancel0}`

Nguyễn Lê Phước Thịnh
27 tháng 2 2021 lúc 19:45

ĐKXĐ: \(x\notin\left\{1;-3\right\}\)

Ta có: \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}+\dfrac{4}{x^2+2x-3}=1\)

\(\Leftrightarrow\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}-\dfrac{\left(2x+5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}+\dfrac{4}{\left(x+3\right)\left(x-1\right)}=\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\dfrac{3x^2+9x-x-3-\left(2x^2-2x+5x-5\right)+4}{\left(x+3\right)\left(x-1\right)}=\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\dfrac{3x^2+8x-3-\left(2x^2+3x-5\right)+4}{\left(x+3\right)\left(x-1\right)}=\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}\)

\(\Leftrightarrow\dfrac{3x^2+8x+1-2x^2-3x+5}{\left(x+3\right)\left(x-1\right)}=\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}\)

Suy ra: \(x^2+5x+6-x^2-2x+3=0\)

\(\Leftrightarrow3x+9=0\)

\(\Leftrightarrow3x=-9\)

hay x=-3(Không nhận)

Vậy: \(S=\varnothing\)


Các câu hỏi tương tự
Đinh Cẩm Tú
Xem chi tiết
Alan
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đỗ Linh Hương
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đinh Cẩm Tú
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Ngô Thị Phương Anh
Xem chi tiết