d, ĐKXĐ: \(x\ge-\frac{1}{4}\)
\(pt\Leftrightarrow4x^2+4x+2=2\sqrt{4x+1}\)
\(\Leftrightarrow4x^2+\left(4x+1-2\sqrt{4x+1}+1\right)=0\)
\(\Leftrightarrow4x^2+\left(\sqrt{4x+1}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2=0\\\sqrt{4x+1}-1=0\end{matrix}\right.\Leftrightarrow x=0\left(tm\right)\)
a, ĐKXĐ: \(x\ge-1\)
\(pt\Leftrightarrow\sqrt{x+1}+\sqrt{x+8}=7\)
\(\Leftrightarrow\left(\sqrt{x+1}+\sqrt{x+8}\right)^2=49\)
\(\Leftrightarrow x+1+x+8+2\sqrt{\left(x+1\right)\left(x+8\right)}=49\)
\(\Leftrightarrow\sqrt{\left(x+1\right)\left(x+8\right)}=20-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}20-x\ge0\\\left(x+1\right)\left(x+8\right)=\left(20-x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le20\\49x=392\end{matrix}\right.\Leftrightarrow x=8\left(tm\right)\)
b, ĐKXĐ: \(x\ge-1\)
\(pt\Leftrightarrow\frac{x-3}{\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{x-2}+1}+\frac{x-3}{\sqrt{x+1}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{1}{\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{x-2}+1}+\frac{1}{\sqrt{x+1}+2}\right)=0\)
Do \(\frac{1}{\sqrt[3]{\left(x-2\right)^2}+\sqrt[3]{x-2}+1}+\frac{1}{\sqrt{x+1}+2}>0,\forall x\ge-1\)
Nên \(x=3\left(tm\right)\)
c, ĐKXĐ: \(x\ge-\frac{3}{2}\)
\(pt\Leftrightarrow\left(x^2+2x+1\right)+\left(2x+3-2\sqrt{2x+3}+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2+\left(\sqrt{2x+3}-1\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\\sqrt{2x+3}-1=0\end{matrix}\right.\Leftrightarrow x=-1\left(tm\right)\)