Giải hệ phương trình: \(\begin{cases}\frac{y^2\left(y^2-x\right)+\sqrt{y^2+2}}{-x^2-x+2}=\frac{1}{\sqrt{x+3}-x-1}\\3y^4+y^2-\left(2x+4\right)\sqrt{3x^2+x+1}=0\end{cases}\)
chứng tỏ gia strij của biểu thức ko phụ thuộc vào các biến
\(4\left(x-6\right)-x^2\left(3x+1\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
b) \(xy\left(3x^2-6xy\right)-3\left(x^3y-2x^2y^2-1\right)\)
Giải phương trình: \(-2\left(\sqrt{1+x}+\sqrt{1-x}\right)+7=\sqrt{\left(5-2x\right)\left(5+2x\right)}-2\sqrt{1-x^2}\)
Giải hệ phương trình: \(\begin{cases}\sqrt{2y^2+3x+1}+\sqrt{1-3x}=2\sqrt{y^2+1}\\y^3+1+\sqrt[3]{y^3-3x^2+3x-1}=x\left(y^2+1\right)\end{cases}\)
B1 ( kết quả thôi ko cần lời giải)
a) \(\left(4x-3\right)\left(3x+2\right)-\left(6x+1\right)\left(2x-5\right)+1\)
b) \(\left(3x+4\right)^2+\left(4x-1\right)^2+\left(2+5x\right)\left(2-5x\right)\)
c) \(\left(2x+1\right)\left(4x^2-2x+1\right)+\left(2-3x\right)\left(4+6x+9x^2\right)-9\)
B2 tìm x(kết quả)
a) \(3x\left(x-4\right)-x\left(5+3x\right)=-34\)
b) \(\left(3x+1\right)^2+\left(5x-2\right)^2=34\left(x+2\right)\left(x-2\right)\)
c) \(x^3+3x^2+3x+28=0\)
Tính
a) \(\left(x+3\right).\left(x^2-3x+9\right)-x.\left(x-2\right)\left(x+2\right)\)
b) \(\left(x+y\right)^3-x.\left(x+3y\right)^2+y\left(y-3x\right)^2\)
Phân tích đa thức thành nhân tử :
1 ) \(a\left(m+n\right)+b\left(m+n\right)\)
2 ) \(a^2\left(x+y\right)-b^2\left(x+y\right)\)
3 ) \(6a^2-3a+12ab\)
4 ) \(2x^2y^4-2x^4y^2+6x^3y^3\)
5 ) \(\left(x+y\right)^3-x\left(x+y\right)^2\)
Giải hệ phương trình: \(\begin{cases}3\sqrt[3]{3x^2+y+1}=\left(x-1\right)^3-y\\x^3-y-2x^2+2x+\sqrt{x}=\sqrt{x^3-y-2x^2+2x+21}\end{cases}\)
rút gọn
a)\(\left(7x-8\right).\left(7x+8\right)-10.\left(2x+3\right)^2+5x.\left(3x-2\right)^24x.\left(x-5\right)^2\)
b) \(\left(3x+7\right)^3-\left(5x-y\right).\left(25x^2+5xy+y^2\right)+\left(x+2y\right)^3\)