Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}\sqrt{x^2+3x+2}-\sqrt{x+1}=2y\sqrt{y^2+1}+9-y-6y^2\\\sqrt{x^2+3x+2}+3\sqrt{x+1}=y\sqrt{y^2+1}-6+3y+4y^2\end{matrix}\right.\)
Giải các phương trình và hệ phương trình sau:
a) x2 - \(2\sqrt{5}\)x + 5 = 0
b) 4x4 - 5x2 - 9 = 0
c) \(\begin{cases}2x+5y=-1\\3x-2y=8\end{cases}\)
d) x ( x + 3 ) = 15 - ( 3x - 1 )
1) \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x^2+y^2-3xy+3x-2y+1=0\\4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y}\end{matrix}\right.\)
Giải hệ \(\left\{{}\begin{matrix}y^2-5\sqrt{x}+5=0\\\sqrt{x+2}=\sqrt{y^2+2y+3}-\frac{1}{5}y^2+y\end{matrix}\right.\)
Giải hệ phương trình:
xy(4xy+y+4)=y^2(2y+5)−1
2xy(x−2y)+x−14y=0
Giải hệ phương trình:\(\left\{{}\begin{matrix}x^3+xy^2+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+2y^2+xy+2x-4=0\end{matrix}\right.\)
giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\dfrac{y}{x}=2+\dfrac{2\sqrt{x}}{y}\\2y^2-2y+1=3xy\end{matrix}\right.\)
giải hệ phương trình:
1/căn(x+2) + 1/căn(y-1) = 1/căn(x+y)
x^2 + y^2 + 4xy - 4x + 2y - 5 = 0
Giải giúp mình hệ này bằng phương pháp liên hợp với ạ
\(\left\{{}\begin{matrix}2\sqrt{x^2+3}-2\sqrt{y^2+5}=-y\\3\sqrt{x^2+3}-\sqrt{y^2+5}=3x\end{matrix}\right.\)