\(y^2-2y+3=\frac{6}{x^2+2x+4}\)
\(\Leftrightarrow\left(y-1\right)^2+2=\frac{6}{\left(x+1\right)^2+3}\)
\(VT=\left(y-1\right)^2+2\ge2\)
\(\left(x+1\right)^2+3\ge3\Rightarrow VP=\frac{6}{\left(x+1\right)^2+3}\le\frac{6}{3}=2\Rightarrow VP\le2\)
\(\Rightarrow VT\ge VP\)
Dấu "=" xảy ra khi và chỉ khi: \(\left\{{}\begin{matrix}y-1=0\\x+1=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)