Giải phương trình sau:
\(\sqrt{x^2-4x-8}+\sqrt{x^2+2\left(1-\sqrt{3}\right)x+8}+\sqrt{x^2+2\left(1+\sqrt{3}\right)x+8}=6\sqrt{2}\).
Giải phương trình sau "
a, \(\sqrt{2x-1}=\sqrt{x^2+2x-5}.\)
b, \(\sqrt{x\left(x^3-3x+1\right)}=\sqrt{x\left(x^3-x\right)}\)
c, \(\sqrt{4x+1}-\sqrt{3x+4}=\sqrt{x-2}\)
d, \(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)
e, \(\sqrt{x+2}-\sqrt{2x-3}=\sqrt{3x-5}\)
f, \(\sqrt{x\left(x-1\right)+\sqrt{x\left(2x-1\right)}=x}\)
g, \(\sqrt{x+1}+\sqrt{x-1}=2\)
h, \(\sqrt{2x-3}-\sqrt{4x+3}=-3\)
Mn giúp với cần gấp bài toan nâng co giải dc thì tick nhiều
Giải các phương trình sau:
1, \(\sqrt{x-2}-3\sqrt{x^2-4}=0\)
2, \(x+\sqrt{x-1}=13\)
3, \(\sqrt{x}-\sqrt{x-1}-\sqrt{x-4}+\sqrt{x+9}=0\)
4, \(\sqrt{x+3}=5-\sqrt{x-2}\)
5, \(\sqrt{16x+17}=8x-33\)
Giải phương trình:
\(\sqrt{x+5}=2\sqrt{x}-2\sqrt{2x-7}\)
1 . Giải phương trình : \(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)
2 . Cho a,b,c là ba số thực dương thỏa mãn \(a^2+b^2+c^2=3\) . CMR : \(\frac{a}{\sqrt{b}}+\frac{b}{\sqrt{c}}+\frac{c}{\sqrt{a}}\ge ab+bc+ca\)
giải pt sau
a) \(x^2-16+64=0\)
b)\(4x^2=36x-81\)
c) \(\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=\left(\sqrt{x}-\sqrt{3}\right)\left(\sqrt{x}+\sqrt{3}\right)\)
d) \(x^2-2x+1=4\)
Giải phương trình sau:
a)\(\frac{1}{\sqrt{x+3}+\sqrt{x+2}}+\frac{1}{\sqrt{x+2}+\sqrt{x+1}}+\frac{1}{\sqrt{x+1}+\sqrt{x}}=1\)
Câu 1 :
Cho biểu thức \(P=\left(\dfrac{x^2}{x^2-3}+\dfrac{2x^2-24}{x^4-9}\right).\dfrac{7}{x^2+8}vớix\ne\pm\sqrt{3}\)
1.Rút gọn P
2.Tìm x để P nhận giá trị nguyên
Câu 2 :
1.Giải phương trình : \(\dfrac{1}{2x-2021}+\dfrac{1}{3x+2022}=\dfrac{1}{15x-2023}-\dfrac{1}{10x-2024}\)
2.Cho đa thức \(P\left(x\right)=2x^3-x^2+ax+bvàQ\left(x\right)=x^2-4x+4\).Tìm a,b để đa thức P(x) chia hết cho đa thức Q(x)
Câu 3:
1.Cho hai số thực x,y thỏa mãn \(0< xy\le1\) . Chứng minh \(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}\le\dfrac{2}{xy+1}\)
2.Cho \(S=a^3_1+a^3_2+a^3_3+...+a^3_{100}\) với \(a_1,a_2,a_3,...a_{100}\) là các số nguyên thỏa mãn \(a_1+a_2+a_3+...+a_{100}=2021^{2022}.CMR:S-1⋮6\)
Giải phương trình:
x+y+z=2(\(2\sqrt{x+1}+3\sqrt{y+2}+4\sqrt{z+3}\) )