ĐKXĐ: x\(\ge4\)
Đặt x-3=t ( t\(\ge0\))
Thay vào tìm được t=\(\dfrac{2\sqrt{3}}{3}\)
\(\Rightarrow x=\dfrac{9+2\sqrt{3}}{3}\)
\(\sqrt{x-2}\)-\(\sqrt{x-3}\)=\(\sqrt{x-4}\)(1)
x-2≥0⇔x≥2
ĐKXĐ: x-3≥0⇔x≥3 ⇔x≥4
x-4≥0⇔x≥4
TXĐ:{x∈R/x≥4}
Ta có:
(1)⇔\(\sqrt{x-2}\)=\(\sqrt{x-4}\)+\(\sqrt{x-3}\)
⇔(\(\sqrt{x-2}\) )2=(\(\sqrt{x-4}+\sqrt{x-3}\))2(vì cả hai vế đều không âm)
⇔x-2 =x-4+2\(\sqrt{\left(x-4\right)\left(x-3\right)}\)+x-3
⇔x-2=2x-7+2\(\sqrt{x^2-7x+12}\)
⇔5-x=2\(\sqrt{x^2-7x+12}\)(2)
Điều kiện:5-x≥0⇔x≤5,ta có:
(2)⇔(5-x)2=(2\(\sqrt{x^2-7x+12}\))2(vì cả hai vế đều không âm)
⇔25-10x+x2=4(x2-7x+12)
⇔25-10x+x2=4x2-28x+48
⇔3x2-18x+23=0
⇔x2-6x+\(\dfrac{23}{3}\)=0
⇔(x2-2.x.3+32)-\(\dfrac{27}{3}+\dfrac{23}{3}\)=0
⇔(x-3)2=\(\dfrac{4}{3}\)
⇔\(\left[{}\begin{matrix}x-3=\dfrac{2}{\sqrt{3}}\\x-3=\dfrac{-2}{\sqrt{3}}\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=\dfrac{9+2\sqrt{3}}{3}\\x=\dfrac{9-2\sqrt{3}}{3}\end{matrix}\right.\) ➜x=\(\dfrac{9+2\sqrt{3}}{3}\)
Vậy phương trình đã cho có 1 nghiệm là:x=\(\dfrac{9+2\sqrt{3}}{3}\)