Giải phương trình \(\sqrt{7x+8} - \sqrt{x} \) bằng \(\sqrt{3x+4}\)
bằng phương pháp ĐÁNH GIÁ MIỀN NGHIỆM.
giải phương trình
\(\sqrt[4]{7x^2+2x+3}=\sqrt[4]{x+3}+\sqrt[4]{3x-x^2+8}\)
bằng phương pháp thế , giải các hệ phương trình sau rồi tính nghiệm gần đúng chính xác đến hai số thập phân
a,\(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{5}y=1\\x+\sqrt{5}y=\sqrt{2}\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\sqrt{2}x+\sqrt{5}y=2\\x+\sqrt{5}y=2\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x-2\sqrt{2}y=\sqrt{3}\\\sqrt{2}x+y=1-\sqrt{6}\end{matrix}\right.\)
bằng phương pháp thế , giải các hệ phương trình sau rồi tính nghiệm gần đúng chính xác đến hai số thập phân
a,\(\left\{{}\begin{matrix}x-\sqrt{3}y=0\\\sqrt{3}x+2y=1+\sqrt{3}\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}\sqrt{2}x-\sqrt{5}y=1\\x+\sqrt{5}y=\sqrt{2}\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\sqrt{2}x+\sqrt{5}y=2\\x+\sqrt{5}y=2\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x-2\sqrt{2}y=\sqrt{3}\\\sqrt{2}x+y=1-\sqrt{6}\end{matrix}\right.\)
Giải phương trình: \(\sqrt{x^2+x+19}+\sqrt{7x^2-2x+4}+\sqrt{13x^2+19x+7}=\sqrt{3}.\left(x+5\right)\)
Giải các phương trình sau: \(\left(\sqrt{x+5}-\sqrt{x+2}\right).\left(4+\sqrt{x^2+7x+10}\right)=6\)
Giải phương trình: \(\left(\sqrt{3x+1}-\sqrt{x+2}\right)\left(\sqrt{3x^2+7x+2}+4\right)=4x-2\)
Giải phương trình bằng cách đặt ẩn phụ
1, \(\left(4x+2\right)\sqrt{x+8}=3x^2+7x+8\)
2, \(x^2+4x+1-2x\sqrt{3x+1}=\sqrt{3x+1}\)
3, \(3x^2+2x+3=\left(3x+1\right)\sqrt{x^2+3}\)
Giải bất phương trình: \(\sqrt[4]{\left(x-2\right).\left(4-x\right)}+\sqrt[4]{x-2}+\sqrt[4]{4-x}+6x\sqrt{3x}\le x^3+30\)