ĐK:\(\frac{1}{2}\leq x\leq \frac{1}{\sqrt{2}}\)
\(\sqrt{2x-1}+\sqrt{1-2x^2}=2\sqrt{x-x^2}\)
Đặt \(\sqrt{2x-1}=a; \sqrt{1-2x^2}=b(a,b\geq 0)\)
\(\Rightarrow a^2+b^2=2x-1+1-2x^2=2(x-x^2)\)
PT trở thành:
\(a+b=2\sqrt{\frac{a^2+b^2}{2}}\)
\(\Rightarrow (a+b)^2=4.\frac{a^2+b^2}{2}=2(a^2+b^2)\)
\(\Rightarrow a^2+b^2+2ab=2(a^2+b^2)\)
\(\Rightarrow 2ab=a^2+b^2\Rightarrow (a-b)^2=0\Rightarrow a=b\)
\(\Rightarrow a^2=b^2\)
Hay \(2x-1=1-2x^2\)
\(\Leftrightarrow x^2+x-1=0\)
\(\Rightarrow x=\frac{\pm \sqrt{5}-1}{2}\)
Kết hợp với ĐKXĐ suy ra \(x=\frac{\sqrt{5}-1}{2}\)