Bài 7: Phương trình quy về phương trình bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Nguyễn Khánh Uyên

Giải các phương trình sau:

a) \(\left(x-\sqrt{2}\right)^3+\left(x+\sqrt{3}\right)^3+\left(\sqrt{2}-\sqrt{3}-2x\right)^3=0\)

b) \(x^4=8x+7\)

c) \(x^3-x^2-x=\dfrac{1}{3}\)

ngonhuminh
6 tháng 3 2018 lúc 22:46

câu (a) biến đổi HĐT số 5 (a+b+c=0)

câu b

x^4 =8x+7

\(x^4+2x^2+1=2x^2+8x+8\Leftrightarrow\left(x^2+1\right)^2=2\left(x+2\right)^2\)\(\Leftrightarrow\left|x^2+1\right|=\sqrt{2}\left|x+2\right|\)

\(\Leftrightarrow x^2+1=\sqrt{2}x+2\sqrt{2}\Leftrightarrow x^2-\sqrt{2}x-2\sqrt{2}+1=0\)

\(\Delta_x=2-4\left(-2\sqrt{2}+1\right)=8\sqrt{2}-2\)

\(\Leftrightarrow x=\dfrac{\sqrt{2}\pm\sqrt{8\sqrt{2}-2}}{2}\)

Hung nguyen
7 tháng 3 2018 lúc 8:59

a/ Đặt \(\left\{{}\begin{matrix}x-\sqrt{2}=a\\x+\sqrt{3}=b\end{matrix}\right.\)

\(\Rightarrow a^3+b^3-\left(a+b\right)^3=0\)

\(\Leftrightarrow3ab\left(a+b\right)=0\)

b/ Lấy bài của bạn ở trên

c/ \(x^3-x^2-x=\dfrac{1}{3}\)

\(\Leftrightarrow3x^3-3x^2-3x=1\)

\(\Leftrightarrow4x^3=x^3+3x^2+3x+1\)

\(\Leftrightarrow4x^3=\left(x+1\right)^3\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thái Viết Nam
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Thái Viết Nam
Xem chi tiết
Đào Kim Ngân
Xem chi tiết
Mai Thị Thanh Xuân
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết