sin2x + 1 - 2sin2x + sinx + cosx = 0
⇔ sin2x + cos2x + sinx + cosx = 0
⇔ \(\sqrt{2}sin\left(2x+\dfrac{\pi}{4}\right)+\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=0\)
⇔ \(sin\left(2x+\dfrac{\pi}{4}\right)+sin\left(x+\dfrac{\pi}{4}\right)=0\)
⇔ \(2sin\left(\dfrac{3x}{2}+\dfrac{\pi}{4}\right).cos\dfrac{x}{2}=0\)
⇔ \(\left[{}\begin{matrix}sin\left(3x+\dfrac{\pi}{4}\right)=0\\cos\dfrac{x}{2}=0\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k.\dfrac{\pi}{3}\\x=\pi+k.2\pi\end{matrix}\right.\) , k ∈ Z