`|x+1|=|2x+3|`
`<=>` $\left[ \begin{array}{l}x+1=2x+3\\x+1=-2x-3\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=-2\\3x=-4\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=-2\\x=-\dfrac43\end{array} \right.$
Vậy `S={-2,-4/3}`
$| x + 1 | = | 2x + 3 |$
$<=>(| x + 1 |)^2 = (| 2x + 3 |)^2$`
$<=>x^2 + 2x + 1 = 4x^2 + 12x + 9$
$<=> 3x^2 + 10x + 8 = 0$
$<=>3x^2 + 6x + 4x + 8 = 0$
$<=> 3x ( x + 2 ) + 4 ( x + 2 ) = 0$
$<=> ( x + 2 ) ( 3x + 4 ) = 0 $
$<=>\left[\begin{array}{}x = -2\\x = \dfrac{-4}{3}\end{array} \right.$
Vậy $ S = { -2 ; \dfrac{-4}{3} }$