ĐK:\(x\ge 2\)
\(pt\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x-2\right)}-\sqrt{\left(x-2\right)\left(x^2-x-2\right)}+\sqrt{x+1}-\sqrt{x-2}-3=0\)
\(\Leftrightarrow\left(\sqrt{\left(x+1\right)\left(x^2-x-2\right)}-4\right)-\left(\sqrt{\left(x-2\right)\left(x^2-x-2\right)}-2\right)+\sqrt{x+1}-2-\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-x-2\right)-16}{\sqrt{\left(x+1\right)\left(x^2-x-2\right)}+4}-\dfrac{\left(x-2\right)\left(x^2-x-2\right)-4}{\sqrt{\left(x-2\right)\left(x^2-x-2\right)}+2}+\dfrac{x+1-4}{\sqrt{x+1}+2}-\dfrac{x-2-1}{\sqrt{x-2}+1}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x^2+3x+6\right)}{\sqrt{\left(x+1\right)\left(x^2-x-2\right)}+4}-\dfrac{\left(x-3\right)x^2}{\sqrt{\left(x-2\right)\left(x^2-x-2\right)}+2}+\dfrac{x-3}{\sqrt{x+1}+2}-\dfrac{x-3}{\sqrt{x-2}+1}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{x^2+3x+6}{\sqrt{\left(x+1\right)\left(x^2-x-2\right)}+4}-\dfrac{x^2}{\sqrt{\left(x-2\right)\left(x^2-x-2\right)}+2}+\dfrac{1}{\sqrt{x+1}+2}-\dfrac{1}{\sqrt{x-2}+1}\right)=0\)
\(\Rightarrow x-3=0\Rightarrow x=3\)
ĐK:\(x\ge 2\)
\(pt\Leftrightarrow\sqrt{\left(x+1\right)\left(x^2-x-2\right)}-\sqrt{\left(x-2\right)\left(x^2- x-2\right)}+\sqrt{x+1}-\sqrt{x-2}-3=0\)
\(\Leftrightarrow\left(\sqrt{\left(x+1\right)\left(x^2-x-2\right)}-4\right)-\left(\sqrt{\left(x- 2\right)\left(x^2-x-2\right)}-2\right)+\sqrt{x+1}-2-\left(\sqrt{x-2}-1\right)=0\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x^2-x-2\right)-16} {\sqrt{\left(x+1\right)\left(x^2-x-2\right)}+4}-\dfrac{\left(x-2\right)\left(x^2-x-2\right)-4} {\sqrt{\left(x-2\right)\left(x^2-x-2\right)}+2}+\dfrac{x+1-4}{\sqrt{x+1}+2}-\dfrac{x-2-1} {\sqrt{x-2}+1}=0\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x^2+3x+6\right)} {\sqrt{\left(x+1\right)\left(x^2-x-2\right)}+4}-\dfrac{\left(x-3\right)x^2}{\sqrt{\left(x- 2\right)\left(x^2-x-2\right)}+2}+\dfrac{x-3}{\sqrt{x+1}+2}-\dfrac{x-3}{\sqrt{x-2}+1}=0\)
\(\Leftrightarrow\left(x-3\right)\left(\dfrac{x^2+3x+6}{\sqrt{\left(x+1\right)\left(x^2-x- 2\right)}+4}-\dfrac{x^2}{\sqrt{\left(x-2\right)\left(x^2-x-2\right)}+2}+\dfrac{1} {\sqrt{x+1}+2}-\dfrac{1}{\sqrt{x-2}+1}\right)=0\)
\(\Rightarrow x-3=0\Rightarrow x=3\)