Nhận xét : Để phương trình này ta có thể sử dụng phương pháp biến đổi tương đương ,đặt ẩn dụ đưa về phương trình hoặc hệ phương trình .
Tuy nhiên cũng có thể dùng phương pháp lượng giác hóa để giải .
Ta có điều kiện -1 \(\le x\le8\)
Suy ra \(\left\{{}\begin{matrix}0\le1+x\le9\\0\le8-x\le9\end{matrix}\right.\)nên \(\left\{{}\begin{matrix}0\le\sqrt{1+x}\le3\\0\le\sqrt{8-x}\le3\end{matrix}\right.\)
Mặt khác \(\left(\sqrt{1+x}\right)^2+\left(\sqrt{8-x}\right)^2=9\)
Do đó đặt \(\left\{{}\begin{matrix}\sqrt{1+x}=3sinu\\\sqrt{3-x}=3cosu\end{matrix}\right.\)\(,u\in\left[0;\frac{\pi}{2}\right]\)
Khi đó (1) <=> 3sin u + 3cos u + 9 sin u cos u = 3
<=> sin u + cos u + 3 sin u cos u = 1
Đặt t = sin u + cos u => sin u cos u = \(\frac{t^2-1}{2};1\le t\le\sqrt{2}\)
Suy ra (1) <=> \(\left\{{}\begin{matrix}1\le t\le\sqrt{2}\\3t^2+2t-5=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}1\le t\le\sqrt{2}\\\left[{}\begin{matrix}t=1\\t=\frac{5}{3}\end{matrix}\right.\end{matrix}\right.\)<=> t = 1
Với t = 1 thì sin u ,cos u = 0 <=> \(\left[{}\begin{matrix}sinu=0\\cosu=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}=0\\\sqrt{8-x}=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)
Bạn viết tách sin ; cos với u giúp mình
Vậy phương trình có tập nghiệm x =- 1 ; x = 8
a/ ĐKXĐ; \(-1\le x\le8\)
Đặt \(\sqrt{1+x}+\sqrt{8-x}=t>0\Rightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\frac{t^2-9}{2}\)
\(\Rightarrow t+\frac{t^2-9}{2}=3\)
\(\Leftrightarrow t^2+2t-15=0\Rightarrow\left[{}\begin{matrix}t=3\\t=-5\left(l\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{1+x}+\sqrt{8-x}=3\)
\(\Leftrightarrow9+2\sqrt{\left(1+x\right)\left(8-x\right)}=9\)
\(\Leftrightarrow\left(1+x\right)\left(8-x\right)=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)
b/ ĐKXĐ:...
\(\Leftrightarrow x-19-2\sqrt{x-19}+1+y-7-4\sqrt{y-7}+4+z-1997-6\sqrt{z-1997}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-19}-1\right)^2+\left(\sqrt{y-7}-2\right)^2+\left(\sqrt{z-1997}-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-19}=1\\\sqrt{y-7}=2\\\sqrt{z-1997}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=20\\y=11\\z=2006\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ge-1\)
\(\Leftrightarrow10\sqrt{\left(x+1\right)\left(x^2-x+1\right)}=3\left(x^2+2\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+1}=a\\\sqrt{x^2-x+1}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^2=x^2+2\)
Pt tương đương:
\(10ab=3\left(a^2+b^2\right)\Leftrightarrow3a^2-10ab+3b^2=0\)
\(\Leftrightarrow\left(3a-b\right)\left(a-3b\right)=0\Rightarrow\left[{}\begin{matrix}3a=b\\a=3b\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3\sqrt{x+1}=\sqrt{x^2-x+1}\\\sqrt{x+1}=3\sqrt{x^2-x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}9\left(x+1\right)=x^2-x+1\\x+1=9\left(x^2-x+1\right)\end{matrix}\right.\) \(\Leftrightarrow...\)