a)
\(\dfrac{1}{x+1}+\dfrac{2}{x^3-x^2-x+1}+\dfrac{3}{x^2-1}=0\) (\(x\ne\pm1\))
\(\Rightarrow\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)^2}+\dfrac{2}{\left(x+1\right)\left(x-1\right)^2}+\dfrac{3\left(x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=0\)
\(\Rightarrow\dfrac{x^2-2x+1+2+3x-3}{\left(x+1\right)\left(x-1\right)^2}=0\)
\(\Rightarrow\dfrac{x^2+x-2}{\left(x+1\right)\left(x-1\right)^2}=0\)
\(\Rightarrow x^2-x+2=0\)
\(\Rightarrow\left(x-1\right)\left(x+2\right)=0\)
=> Th1 :
x- 1 =0
=> x = 1 ( hư cấu vì không thỏa mãn ĐK )
Th2 :
x+2 = 0
=> x = -2 ( hợp lí )
Vậy nghiệm của phương trình là x = -2