Lời giải:
Ta có \(y^2\geq 0, \forall y\in\mathbb{Z}\)
\(\Rightarrow 3x^2=12-5y^2\leq 12\)
\(\Rightarrow x^2\leq 4\Rightarrow -2\leq x\leq 2\). Vì \(x\in\mathbb{Z}\Rightarrow x\in \left\{-2;-1;0;1;2\right\}\)
Nếu \(x=\pm 2\Rightarrow 5y^2=12-3x^2=0\Rightarrow y=0\) (t/m)
Nếu \(x=\pm 1\Rightarrow 5y^2=9\Rightarrow y^2=\frac{9}{5}\not\in\mathbb{Z}\) (loại)
Nếu \(x=0\Rightarrow 5y^2=12\Rightarrow y^2=\frac{12}{5}\not\in\mathbb{Z}\) (loại)
Vậy $(x,y)=(-2,0); (2,0)$