Tìm tất cả các nghiệm nguyên dương của phương trình \(x^2+x+2y^2+y=2xy^2+xy+3\)
Cho hệ phương trình:\(\left\{{}\begin{matrix}2x+y=5m-1\\x-2y=2\end{matrix}\right.\)(m là tham số)
1.Giải hệ phương trình với m=1
2.Tìm m để hệ phương trình có nghiệm (x;y) thỏa mãn đẳng thức \(x^2+2y^2=2\)
Giải các phương trình và hệ phương trình sau :
1. \(3x^2-7x+2=0\)
2. \(x^4-5x+4=0\)
3. \(\left\{{}\begin{matrix}\sqrt{5}x-2y=7\\x-\sqrt{5}y=2\sqrt{5}\end{matrix}\right.\)
Giải các hệ phương trình sau :
a, \(\left\{{}\begin{matrix}x^2+xy=y^2+1\\3x+y=y^2+3\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x^2-y^2=4x-2y-3\\x^2+y^2=5\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^2+x-xy-2y^2-2y=0\\x^2+y^2=1\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}2\left(y+z\right)=yz\\xy+yz+zx=108\\xyz=180\end{matrix}\right.\)
Giải phương trình và hệ phương trình:
1) \(-2x^2+x+1-2\sqrt{x^2+x+1}=0\)
2) \(\left\{{}\begin{matrix}x^4+y^3x+x^2y^2=3y^4\\2x^2+y^4+1=2x\left(y^2+1\right)\end{matrix}\right.\)
giải hệ phương trình \(\left\{{}\begin{matrix}mx+2y=m+1\\x-y=2\end{matrix}\right.\)
a, giải hệ phương trình khi m=2
b, tìm m để hệ phương trình có nghiệm duy nhất (x,y) thỏa mãn xy = x+y+2
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}4x^3+y^2-2y+5=0\\x^2+x^2y^2-4y+3=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{2x^2}{x^2+1}=y\\\dfrac{3y^3}{y^4+y^2+1}=z\\\dfrac{4z^4}{z^6+z^4+z^2+1}=x\end{matrix}\right.\)
Giải hệ phương trình
\(\left\{{}\begin{matrix}x^2-xy+y-7=0\\x^2+xy-2y=4\left(x-1\right)\end{matrix}\right.\)
Tìm tất cả ngiệm nguyên x,y của phương trình \(x^2=y^2\left(x+y^4+2y^2\right)\)
Cho hệ phương trình \(\left\{{}\begin{matrix}x+ay=3a\\-\text{ax}+y=2-a^2\end{matrix}\right.\)(*) với a là tham số. Tìm giá trị a để hệ phương trình (*) có nghiệm duy nhất (x,y) thỏa mãn \(\dfrac{2y}{x^2+3}\) là số nguyên