Violympic toán 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
nguyen ha giang

Giải phương trình: \(\frac{x^6-1}{x^3}-3\frac{x^2-1}{x}-1=0\).

Nguyễn Việt Lâm
29 tháng 6 2019 lúc 12:35

ĐKXĐ: ...

\(\Leftrightarrow x^3-\frac{1}{x^3}-3\left(x-\frac{1}{x}\right)-1=0\)

Đặt \(x-\frac{1}{x}=a\Rightarrow a^3=x^3-\frac{1}{x^3}-3\left(x-\frac{1}{x}\right)\)

\(\Rightarrow x^3-\frac{1}{x^3}=a^3+3\left(x-\frac{1}{x}\right)=a^3+3a\)

Phương trình trở thành:

\(a^3+3a-3a-1=0\Rightarrow a^3=1\Rightarrow a=1\)

\(\Rightarrow x-\frac{1}{x}=1\Rightarrow x^2-x-1=0\)


Các câu hỏi tương tự
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
sunnie
Xem chi tiết
sunnie
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết
nguyen ha giang
Xem chi tiết