<=> sin5x=5sinx
<=> Sin5x-sinx=4sinx
<=> 2cos3x.sin2x=4sinx
<=>4cos3x.sinx.cosx=4sinx
<=>(cos3x.cosx-1).sinx=0
Sinx=0 hoặc cos3x.cosx -1=0
TH1. Sinx=0 => x=kπ
TH2: cos3x.cosx-1=0
<=> Cos3x.cosx=1
<=>cos4x + cos2x =2
<=> 2cos ²2x -1 +cos2x -2=0
<=> 2cos ²2x +cos 2x -3=0
Cos 2x= 1 =>. X=kπ/2
Cos2x= -3/2 <-1(loai)
Vậy x=kπ/2
ĐK: \(x\ne k\pi\)
\(\dfrac{sin5x}{5sinx}=1\)
\(\Leftrightarrow sin5x=5sinx\)
\(\Leftrightarrow sin5x-sinx=4sinx\)
\(\Leftrightarrow2cos3x.sin2x=4sinx\)
\(\Leftrightarrow4sinx.cosx.cos3x=4sinx\)
\(\Leftrightarrow cosx.cos3x=1\) (Vì \(sinx\ne0\))
\(\Leftrightarrow\dfrac{1}{2}\left(cos4x+cos2x\right)=1\)
\(\Leftrightarrow2cos^22x-1+cos2x=2\)
\(\Leftrightarrow2cos^22x+cos2x-3=0\)
\(\Leftrightarrow\left(cos2x-1\right)\left(2cos2x+3\right)=0\)
\(\Leftrightarrow cos2x=1\) (Vì \(2cos2x+3>0\))
\(\Leftrightarrow x=k\pi\left(l\right)\)
Vậy phương trình đã cho vô nghiệm