Phương trình tương đương với :
\(\left\{{}\begin{matrix}\dfrac{\pi}{2}\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{\pi}{4}+2k\pi\\\dfrac{\pi}{2}\cos\left(x-\dfrac{\pi}{4}\right)=-\dfrac{\pi}{4}+2k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}+4k\left(1\right)\\\cos\left(x-\dfrac{\pi}{4}\right)=-\dfrac{1}{2}+4k\left(2\right)\end{matrix}\right.k\in Z\)
Phương trình (1) có nghiệm khi và chỉ khi :
\(\left|\dfrac{1}{2}+4k\right|\le1\Leftrightarrow\dfrac{-3}{8}\le k\le\dfrac{1}{8}\Leftrightarrow k=0\left(k\in Z\right)\)
Khi đó (1) có dạng :
\(\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{\pi}{3}+2l\pi\\x-\dfrac{\pi}{4}=-\dfrac{\pi}{3}+2l\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7\pi}{12}+2l\pi\\x=\dfrac{-\pi}{12}+2l\pi\end{matrix}\right.l\in Z\left(3\right)\)
Phương trình (2) có nghiệm khi và chỉ khi :
\(\left|-\dfrac{1}{2}+4k\right|\le1\Leftrightarrow\dfrac{-1}{8}\le k\le0\left(k\in Z\right)\)
Khi đó (2) có dạng :
\(\cos\left(x-\dfrac{\pi}{4}\right)=-\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{\pi}{4}=\dfrac{2\pi}{3}+2l\pi\\x-\dfrac{\pi}{4}=-\dfrac{2\pi}{3}+2l\pi\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11\pi}{12}+2l\pi\\x=\dfrac{-5\pi}{12}+2l\pi\end{matrix}\right.l\in Z\left(4\right)\)
Kết hợp (3),(4) ta có :
\(\left\{{}\begin{matrix}x=\dfrac{11\pi}{12}+l\pi\\x=\dfrac{7\pi}{12}+l\pi\end{matrix}\right.,l\in Z\)
Vậy phương trình có 2 bộ nghiệm