Bài 7: Phương trình quy về phương trình bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Thảo Nguyễn

Giải phương trình bằng cách đặt ẩn phụ:

\(\left(x^2+5x+8\right)\left(x^2+6x+8\right)=2x^2\)

Nguyễn Lê Phước Thịnh
16 tháng 4 2022 lúc 13:39

\(\Leftrightarrow\left(x^2+8+5x\right)\left(x^2+8+6x\right)=2x^2\)

\(\Leftrightarrow\left(x^2+8\right)^2+11x\left(x^2+8\right)+30x^2-2x^2=0\)

\(\Leftrightarrow\left(x^2+8\right)^2+11x\left(x^2+8\right)+28x^2=0\)

\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+7x+8\right)=0\)

\(\Leftrightarrow x^2+7x+8=0\)

\(\text{Δ}=49-32=17>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-7-\sqrt{17}}{2}\\x_2=\dfrac{-7+\sqrt{17}}{2}\end{matrix}\right.\)


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đỗ ĐứcANh
Xem chi tiết
Thảo Nguyễn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Minh Hoàng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết