Bài 7: Phương trình quy về phương trình bậc hai

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ ĐứcANh

Giải các phương trình sau:

\(a.\left(x^2-2x\right)^2-2\left(x^2-2x\right)-3=0\)

\(b.\left(x^2+4x+2\right)^2+4x^2+16x+11=0\)

Nguyễn Lê Phước Thịnh
28 tháng 3 2021 lúc 13:42

a) Ta có: \(\left(x^2-2x\right)^2-2\left(x^2-2x\right)-3=0\)

\(\Leftrightarrow\left(x^2-2x\right)^2+\left(x^2-2x\right)-3\left(x^2-2x\right)-3=0\)

\(\Leftrightarrow\left(x^2-2x\right)\left(x^2-2x+1\right)-3\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x^2-2x-3\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=3\end{matrix}\right.\)

Vậy: S={1;-1;3}


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Đặng Nguyễn Khánh Uyên
Xem chi tiết
hsrhsrhjs
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Tuyết Mai
Xem chi tiết
Đặng Nguyễn Khánh Uyên
Xem chi tiết