Chương III - Hệ hai phương trình bậc nhất hai ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Johnny

Giải phương trình bậc hai sau:

\(x^2-\left(1+\sqrt{3}\right)x+\sqrt{3}=0\)

Minh Nhân
20 tháng 1 2021 lúc 18:50

\(x^2\left(1+\sqrt{3}\right)x+\sqrt{3}=0\)

\(\Leftrightarrow x^2-x-\sqrt{3}x+\sqrt{3}=0\)

\(\Leftrightarrow x\left(x-1\right)-\sqrt{3}\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-\sqrt{3}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-\sqrt{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\sqrt{3}\end{matrix}\right.\)

\(S=\left\{1,\sqrt{3}\right\}\)

 

Nguyễn Duy Khang
20 tháng 1 2021 lúc 18:56

\(x^2-\left(1+\sqrt{3}\right)x+\sqrt{3}=0\)

Xét \(\Delta=b^2-4ac=\left(1+\sqrt{3}\right)^2-4.1.\sqrt{3}=4-2\sqrt{3}\)

=> Phương trình có 2 nghiệm phân biệt

\(\left\{{}\begin{matrix}x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-\left(1+\sqrt{3}\right)+\sqrt{4-2\sqrt{3}}}{2.1}=-1\\x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-\left(1+\sqrt{3}\right)-\sqrt{4-2\sqrt{3}}}{2.1}=-\sqrt{3}\end{matrix}\right.\)

 


Các câu hỏi tương tự
nguyen2005
Xem chi tiết
illumina
Xem chi tiết
kkkkkkkkkkkk
Xem chi tiết
Eren
Xem chi tiết
thu dinh
Xem chi tiết
김태형
Xem chi tiết
Trần Thanh Phương
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Nguyễn Tường Vy
Xem chi tiết