Câu 1 . Cho \(a,b\ge3.\) Chứng minh rằng
\(A=21\left(a+\dfrac{1}{b}\right)+3\left(b+\dfrac{1}{a}\right)\ge80\)
Câu 2. Giải phương trình :
\(x^2+6x-1=2\sqrt{5x^3-3x^2+3x-2}\)
Câu 3. Tìm GTNN của
\(Q=\dfrac{1}{2}\left(\dfrac{x^{10}}{y^2}+\dfrac{y^{10}}{x^2}\right)+\dfrac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)
Câu 4 . Giải phương trình
\(\dfrac{\sqrt{x-2009}-1}{x-2009}+\dfrac{\sqrt{y-2010}-1}{y-2010}+\dfrac{\sqrt{z-2011}-1}{z-2011}=\dfrac{3}{4}\)
Tìm các số x, y thỏa mãn đẳng thức:
a, \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
b, \(\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}=\dfrac{1}{2}\left(x+y+z\right)\)
giải pt
\(\sqrt{x-2008}+\sqrt{y-2009}+\sqrt{z-2010}=\dfrac{1}{2}\left(x+y+z\right)\)
Mấy bạn giúp mình bài này nha!
1) Tính A=(\(\sqrt{6}+\sqrt{2}\))*(\(\sqrt{3}-2\))*\(\sqrt{2+\sqrt{3}}\)
2) Cho x=4+\(\sqrt{10}\)
Tính A=\(\sqrt{3x+\sqrt{6x-1}}+\sqrt{3x-\sqrt{6x-1}}\)
3) Cho \(\sqrt{x}+\sqrt{y}-\sqrt{z}=0\)
CMR: \(\dfrac{1}{x+y-z}+\dfrac{1}{y+z-x}+\dfrac{1}{z+x-y}=0\)
4) Cho (\(\sqrt{x^2+5}+x\))*(\(\sqrt{y^2+5}+y\))=4
CMR: x+y=0
Giải các phương trình sau:
a) \(\sqrt{1+x}+\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)
b) \(x+y+z-2009=2\sqrt{x-19}+4\sqrt{y-7}+6\sqrt{z-1997}\)
c) \(10\sqrt{x^3+1}=3\left(x^2+2\right)\)
Cho 3 số x y z thỏa mãn x+y+z=xyz.Cm:\(\dfrac{\sqrt{\left(1+y^2\right)\left(1+z^2\right)}-\sqrt{1+y^2}-\sqrt{1+z^2}}{yz}+\dfrac{\sqrt{\left(1+z^2\right)\left(1+x^2\right)}-\sqrt{1+z^2}-\sqrt{1+x^2}}{zx}+\dfrac{\sqrt{\left(1+x^2\right)\left(1+y^2\right)}-\sqrt{1+x^2}-\sqrt{1+z^2}}{yz}=0\)
Giải phương trình \(x\sqrt{3x-2}+\sqrt{3-2x}=\sqrt{x^3+x^2+x+1}\)
.... giúp :)>
Bài 1:Rút gọn biểu thức
A=\(\dfrac{\sqrt{x}-2}{x-4}\)
B=\(\dfrac{x^2-2x\sqrt{2}+2}{x^2-2}\)
C\(\dfrac{x+\sqrt{5}}{x^2+2x\sqrt{5}+5}\)
D=\(\dfrac{\sqrt{a}-2a}{2\sqrt{a}-1}\)
E=\(\dfrac{x^2-2}{x-\sqrt{2}}\)
F=\(\dfrac{\sqrt{x}-3}{x-9}\)
G=\(\dfrac{x+\sqrt{x}\sqrt{y}}{x-y}\)
Bài 2:
A=\(\dfrac{2}{x^2-y^2}\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}\)
Bài 3:Giải phương trình
a,\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
Tìm x, y, z biết:
\(\sqrt{x+1}+\sqrt{y-3}+\sqrt{z-1}=\dfrac{1}{2}\left(x+y+z\right)\)