Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Na

Giải phương trình

a) \(x-\sqrt{2x+3}=0\)

b) \(\sqrt{x^2+x+12}=8-x\)

c) \(2\sqrt{x-1}+\sqrt{x+2}=x+3\)

d) \(x^2-7x+14-2\sqrt{x-3}=0\)

Rimuru tempest
6 tháng 11 2018 lúc 23:19

a) \(x=\sqrt{2x+3}\) (đk \(x\ge-\dfrac{2}{3}\) )

\(\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=-1\left(l\right)\\x=3\left(nh\right)\end{matrix}\right.\)

b)ĐK \(x\le8\)

\(\Leftrightarrow x^2+x+12=\left(8-x\right)^2\)

\(\Leftrightarrow x^2+x+12=x^2-16x+64\)

\(\Leftrightarrow17x=52\Rightarrow x=\dfrac{52}{17}\)

c) ĐK \(x\ge1\)

\(\Leftrightarrow\left(2\sqrt{x-1}+\sqrt{x+2}\right)^2=\left(x+3\right)^2\)

\(\Leftrightarrow4\left(x-1\right)+x+2+4\sqrt{\left(x-1\right)\left(x+2\right)}=x^2+6x+9\)

\(\Leftrightarrow4\sqrt{x^2+x-2}=x^2+x+11\)

\(\Leftrightarrow=x^2+x+2-4\sqrt{x^2+x-2}+9=0\)( vô lí)

suy ra pt vô nghiệm

d) ĐK \(x\ge3\)

\(\Leftrightarrow x^2-6x+9-\left(x-3\right)-2\sqrt{x-3}+2=0\)

\(\Leftrightarrow\left(x-3\right)^2-\left(x-3\right)-2\sqrt{x-3}+2=0\)

Đặt \(t=\sqrt{x-3}\)

\(\Leftrightarrow t^4-t^2-2t+2=0\)

\(\Leftrightarrow t^2\left(t^2-1\right)-2\left(t-1\right)=0\)

\(\Leftrightarrow t^2\left(t-1\right)\left(t+1\right)-2\left(t-1\right)=0\)

\(\Leftrightarrow\left(t-1\right)\left(t^3+t^2-2\right)=0\)

\(\Leftrightarrow\left(t-1\right)^2\left(t^2+2t+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t^2+2t+2=0\left(vl\right)\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{x-3}=1\Leftrightarrow x-3=1\Rightarrow x=4\)


Các câu hỏi tương tự
Na
Xem chi tiết
Na
Xem chi tiết
Na
Xem chi tiết
Quynh Existn
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Bành Thụy Hóii
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết
Hye Kyo Song
Xem chi tiết