a) \(x-\sqrt{2x+3}=0\)
⇔ \(x=\sqrt{2x+3}\left(x\ge0\right)\)
⇔ \(x^2=2x+3\)
⇔ \(x^2-2x-3=0\)
⇔ x2 + x - 3x - 3 = 0
⇔ x(x+1) - 3(x+1) = 0
⇔ (x-3)(x+1) = 0
⇔\(\left\{{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\Leftrightarrow x=3\)
a: \(\Leftrightarrow x=\sqrt{2x+3}\)
=>x^2=2x+3 và x>=0
=>x^2-2x-3=0 và x>=0
=>x=3
b: \(\Leftrightarrow\left\{{}\begin{matrix}x< =8\\x^2+x+12=x^2-16x+64\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< =8\\17x=52\end{matrix}\right.\)
=>x=52/17