a, (x2 + x + 1)(6 - 2x) = 0
Ta có: x2 + x + 1 \(\Leftrightarrow\) (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\)
Vì (x + \(\frac{1}{2}\))2 \(\ge\) 0 với mọi x nên (x + \(\frac{1}{2}\))2 + \(\frac{3}{4}\) \(\ge\) \(\frac{3}{4}\) > 0 với mọi x
\(\Rightarrow\) 6 - 2x = 0
\(\Leftrightarrow\) x = 3
Vậy S = {3}
b, (x - 1)2 - 1 + x2 = (1 - x)(x + 3)
\(\Leftrightarrow\) (x - 1)2 + (x2 - 1) - (1 - x)(x + 3) = 0
\(\Leftrightarrow\) (x - 1)2 + (x - 1)(x + 1) + (x - 1)(x + 3) = 0
\(\Leftrightarrow\) (x - 1)(x - 1 + x + 1 + x + 3) = 0
\(\Leftrightarrow\) (x - 1)(3x + 3) = 0
\(\Leftrightarrow\) x - 1 = 0 hoặc 3x + 3 = 0
\(\Leftrightarrow\) x = 1 và x = -1
Vậy S = {1; -1}
c, (x2 - 1)(x + 2)(x - 3) = (x - 1)(x2 - 4)(x + 5)
\(\Leftrightarrow\) (x2 - 1)(x + 2)(x - 3) - (x - 1)(x2 - 4)(x + 5) = 0
\(\Leftrightarrow\) (x - 1)(x + 1)(x + 2)(x - 3) - (x - 1)(x - 2)(x + 2)(x + 5) = 0
\(\Leftrightarrow\) (x - 1)(x + 2)[(x + 1)(x - 3) - (x - 2)(x + 5)] = 0
\(\Leftrightarrow\) (x2 + 2x - x - 2)(x2 - 3x + x - 3 - x2 - 5x + 2x + 10) = 0
\(\Leftrightarrow\) (x2 + x - 2)(- 5x + 7) = 0
\(\Leftrightarrow\) [(x + \(\frac{1}{2}\))2 - \(\frac{9}{4}\)](-5x + 7) = 0
\(\Leftrightarrow\) (x - 1)(x + 2)(-5x + 7) = 0
\(\Leftrightarrow\) x - 1 = 0 hoặc x + 2 = 0 hoặc -5x + 7 = 0
\(\Leftrightarrow\) x = 1 và x = -2 và x = \(\frac{7}{5}\)
Vậy S = {1; -2; \(\frac{7}{5}\)}
Chúc bn học tốt!!