\(2.\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\)
<=>\(2x+\frac{6}{5}=5-\frac{13}{5}+x\)
<=> \(2x+\frac{6}{5}=\frac{12}{5}+x\)
<=>\(2x-x=\frac{12}{5}-\frac{6}{5}\)
<=>x=\(\frac{6}{5}\)
Vậy S=\(\left\{\frac{6}{5}\right\}\)
\(2.\left(x+\frac{3}{5}\right)=5-\left(\frac{13}{5}+x\right)\)
<=>\(2x+\frac{6}{5}=5-\frac{13}{5}+x\)
<=> \(2x+\frac{6}{5}=\frac{12}{5}+x\)
<=>\(2x-x=\frac{12}{5}-\frac{6}{5}\)
<=>x=\(\frac{6}{5}\)
Vậy S=\(\left\{\frac{6}{5}\right\}\)
giải phương trình
a,\(\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{9\cdot10}\right)\left(x-1\right)+\frac{1}{10}x=x-\frac{9}{10}\)
b,\(\frac{x+1}{1}+\frac{2x+3}{3}+\frac{3x+5}{5}+\frac{20x+39}{39}=22+\frac{4}{3}+\frac{6}{5}+\frac{40}{39}\)
c,(x-20)+(x-19)+(x-18)+...+100+101=101
GIẢI CÁC PHƯƠNG TRÌNH SAU :
Bài 1:
a, \(x^2-4+3>=0\)
b, \(x^4-4x^2+3< 0\)
Bài 2 :
a, \(\frac{7x+5}{5}-x=\frac{\left|3x-5\right|}{2}\)
b, \(x-\frac{\left|3x-2\right|}{5}=3-\frac{2x-5}{3}\)
c, \(\left|x-1\right|+\left|x-2\right|=1\)
Giải các phương trình:
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\frac{3}{\left(x-1\right)\left(x-2\right)}+\frac{2}{\left(x-3\right)\left(x-1\right)}=\frac{1}{\left(x-2\right)\left(x-3\right)}\)
c) \(1+\frac{1}{x+2}=\frac{12}{8+x^3}\)
d) \(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{\left(x-3\right)\left(x+3\right)}\)
Giải phương trình sau:
\(\left(-x-\frac{4}{7}\right)-\left(\frac{5}{3}+\frac{11}{4}\right)=\frac{-5}{6}\)
Bài 1: Giải phương trình:
a) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
b) \(\left(x+\frac{1}{9}\right)\times\left(2x-5\right)< 0\)
c) \(\left(4x-1\right)\times\left(x^2+12\right)\times\left(-x+4\right)>0\)
d) \(\frac{2x+\frac{3x-4}{5}}{15}< \frac{\frac{3-x}{2}+7x}{5}+1-x\)
Bài 2:
a) \(\frac{m-2}{4}+\frac{3m+1}{3}\)có giá trị âm
b)\(\frac{m-4}{6m+9}\)có giá trị dương
c) CMR: \(-x^2+4x-9\le-5\)với mọi x
d) CMR: \(x^2-2x+9\ge8\)với mọi số thực x
\(\text{Giải phương trình:}\)
\(a,\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
\(b,\frac{x-49}{50}+\frac{x-50}{49}=\frac{49}{x-50}+\frac{50}{x-49}\)
\(c,\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{x+3}\)
Rút gọn : \(\frac{1}{\left(x+y\right)^3}.\left(\frac{1}{x^3}+\frac{1}{y^3}\right)+\frac{3}{\left(x+y\right)^5}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\frac{6}{\left(x+y\right)^5}\left(\frac{1}{x}+\frac{1}{y}\right)\)
giải hộ mk phương trình, thanks:
a) \(\frac{4x+3}{5}-\frac{6x-2}{7}=\frac{5x+4}{3}+3\)
b) \(\frac{\left(x-2\right)^2}{3}-\frac{\left(2x-3\right)\left(2x+3\right)}{8}+\frac{\left(x-4\right)^2}{6}=0\)
Giải phương trình
a) \(\frac{2x-5}{x+5}=3\)
b) \(\frac{x^2-6}{x}=x+\frac{3}{2}\)
c)\(\frac{\left(x^2
+2x\right)-\left(3x+6\right)}{x-3}=0\)
d)\(\frac{5}{3x+2}=2x-1\)
e)\(\frac{2x-1}{x-1}+1=\frac{1}{x-1}\)
g)\(\frac{x+3}{x+1}+\frac{x-2}{x}=2\)