Lời giải:
Đặt \(\sqrt{3x^2-2x-1}=a; 2x=b(a\geq 0)\)
\(\Rightarrow b^2-a^2=x^2+2x+1\)
PT đã cho trở thành:
\(b^2+1=a+b\sqrt{b^2-a^2+1}\)
\(\Leftrightarrow (b^2-b\sqrt{b^2-a^2+1})+(1-a)=0\)
\(\Leftrightarrow b(b-\sqrt{b^2-a^2+1})-(a-1)=0(*)\)
Nếu \(b+\sqrt{b^2-a^2+1}=0\)
\(\Rightarrow \left\{\begin{matrix} b\leq 0\\ b^2=b^2-a^2+1\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b\leq 0\\ a^2-1=0\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x\leq 0\\ 3x^2-2x-2=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1-\sqrt{7}}{3}\) (thử lại thấy không thỏa mãn)
Nếu \(b+\sqrt{b^2-a^2+1}\neq 0\) thì:
\((*)\Leftrightarrow b.\frac{a^2-1}{b+\sqrt{b^2-a^2+1}}-(a-1)=0\)
\(\Leftrightarrow (a-1)\left(\frac{b(a+1)}{b+\sqrt{b^2-a^2+1}}-1\right)=0\)
\(\Leftrightarrow (a-1).\frac{ba-\sqrt{b^2-a^2+1}}{b+\sqrt{b^2-a^2+1}}=0\)
\(\Rightarrow \left[\begin{matrix} a=1(1)\\ ba=\sqrt{b^2-a^2+1}(2)\end{matrix}\right.\)
Với (1): \(\Rightarrow a^2=1\Rightarrow 3x^2-2x-2=0\Rightarrow x=\frac{1\pm \sqrt{7}}{3}\) . Thử lại chỉ thấy \(x=\frac{1+\sqrt{7}}{3}\) thỏa mãn
Với (2): \(\Rightarrow b^2a^2=b^2-a^2+1\Rightarrow a^2(b^2+1)-(b^2+1)=0\)
\(\Rightarrow (b^2+1)(a^2-1)=0\Rightarrow a^2=1\) (giống như trên ta chỉ thu được \(x=\frac{1+\sqrt{7}}{3}\) )
Vậy..........