\(pt\Leftrightarrow3\sqrt{8x^2+3}-3\sqrt{8x^2-8x+4}=8x-1\)
\(\Leftrightarrow3\cdot\frac{8x-1}{\sqrt{8x^2+3}+\sqrt{8x^2-8x+4}}-\left(8x-1\right)=0\)
\(\Leftrightarrow\left(8x-1\right)\left(\frac{3}{\sqrt{8x^2+3}+\sqrt{8x^2-8x+4}}-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{8}\\\sqrt{8x^2+3}+\sqrt{8x^2-8x+4}=3\end{matrix}\right.\)
\(pt2\Leftrightarrow-8x-8+2\sqrt{8x^2+3}=0\)
\(\Leftrightarrow16x^2+16+32x=8x^2+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-8+\sqrt{38}}{4}\\x=\frac{-8-\sqrt{38}}{4}\end{matrix}\right.\)(loại vì ko tm đk)