Lời giải:
ĐK: $xy\geq 0$
Xét PT $(1)$:
\(x+y=1+\sqrt{xy}(*)\Rightarrow (x+y)^2=(1+\sqrt{xy})^2\)
\(\Leftrightarrow x^2+y^2=1+2\sqrt{xy}-xy=2-(\sqrt{xy}-1)^2\leq 2\)
Xét PT $(2)$:
Áp dụng BĐT AM-GM:
\(\sqrt{x^2+3}+\sqrt{y^2+3}\leq \frac{4+(x^2+3)}{4}+\frac{4+(y^2+3)}{4}=\frac{14+x^2+y^2}{4}\leq \frac{14+2}{4}=4\)
Dấu "=" xảy ra khi : \(\left\{\begin{matrix} \sqrt{xy}-1=0\\ x^2+3=4\\ y^2+3=4\end{matrix}\right.\Rightarrow x=y=\pm 1\)
Mặt khác từ $(*)$ suy ra $x+y>0$ nên $x=y=1$ là đáp án cuối cùng.