giải hpt \(\left\{{}\begin{matrix}x+y-\sqrt{xy}=1\\\sqrt{x^2+3}+\sqrt{y^2+3}=4\end{matrix}\right.\)
Giải hệ PT: \(\left\{{}\begin{matrix}x^2+y^2-xy+4y+1=0\\y\left(7-x^2-y^2+2xy\right)=2\left(x^2+1\right)\end{matrix}\right.\)
giúp mik giải bài hệ pt vs mn!
\(\left\{{}\begin{matrix}\sqrt{9y^2\left(2y+3\right)\left(y-x\right)}+4\sqrt{xy}=7x\\\left(2y-1\right)\sqrt{1+x}+\left(2y+1\right)\sqrt{1-x}=2y\end{matrix}\right.\)
1,\(\left\{{}\begin{matrix}x^2+xy-3x+y=0\\x^4+3x^2y-5x^2+y^2=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\left(2x-1\right)^2+4\left(y-1\right)^2=22\\xy\left(x-1\right)\left(y-2\right)=1\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^2-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)
a, giải pt 1, \(\sqrt{x+4}+\sqrt{x-4}=2x-12+2\sqrt{x^2-16}\)
2, \(\sqrt{2x+1}+3\sqrt{4x^2-2x+1}=3+\sqrt{8x^3+1}\)
b, giải hpt 1, \(\left\{{}\begin{matrix}x^2+4y^2-5=0\\4x^2y+8xy^2+5x+10y-1=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2-2x+2y-3=0\\16x^2-8xy^2+y^4-2y+4=0\end{matrix}\right.\)
tìm a để hệ phương trình có nghiệm duy nhất \(\left\{{}\begin{matrix}\left(x+1\right)^2=y+a\\\left(y+1\right)^2=x+a\end{matrix}\right.\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}4\left(2x\sqrt{2x-1}-y^3-3y^2\right)=15y+7+\sqrt{2x+1}\\\sqrt{\frac{y\left(y+2\right)}{2}}+\sqrt{6-x}=2x^2+2y^2-15x+4y+12\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\sqrt{2x+y+1}-\sqrt{x+y}=1\\3x+2y=4\end{matrix}\right.\)
Giair HPT:
giải các hệ phương tình sau :
1) \(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=5\\x^2+y^2+\dfrac{1}{x^2}+\dfrac{1}{y^2}=9\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}x\left(3x+2y\right)\left(x+1\right)=12\\x^2+2y+4x-8=0\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x-3y=\dfrac{4y}{x}\\y-3x=\dfrac{4x}{y}\end{matrix}\right.\)
giúp mình với ạ ><