1,\(\left\{{}\begin{matrix}x^2+xy-3x+y=0\\x^4+3x^2y-5x^2+y^2=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}\left(2x-1\right)^2+4\left(y-1\right)^2=22\\xy\left(x-1\right)\left(y-2\right)=1\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\left(x^2+y^2\right)\left(x+y+1\right)=25\left(y+1\right)\\x^2+xy+2y^2+x-8y=9\end{matrix}\right.\)
4,\(\left\{{}\begin{matrix}5x^2y-4xy^2+3y^2-2\left(x+y\right)=0\\xy\left(x^2+y^2\right)+2=\left(x+y\right)^2\end{matrix}\right.\)
giải hpt \(\left\{{}\begin{matrix}x+y-\sqrt{xy}=1\\\sqrt{x^2+3}+\sqrt{y^2+3}=4\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^{2+y^2+xy=4}\\x+y+xy=2\end{matrix}\right.\)
Bài 5 : Giải hệ phương trình sau \(\left\{{}\begin{matrix}x+y+x^2+y^2=8\\xy\left(x+1\right)\left(y+1\right)=12\end{matrix}\right.\)
1.cho hệ PT:
\(\left\{{}\begin{matrix}x^2+y^2=2\left(m+1\right)\\\left(x+y\right)^2=4\end{matrix}\right.\)
xác định m để hệ PT có nghiệm duy nhất
2. giải HPT
\(\left\{{}\begin{matrix}x+y-\sqrt{xy}\\\sqrt{x+1}+\sqrt{y+1}=4\end{matrix}\right.\)
- giúp ạ !
giải hệ phương trình
\(\left\{{}\begin{matrix}x+y+x^2+y^2=8\\xy\left(x+1\right)\left(y+1\right)=12\end{matrix}\right.\)
Giải HPT
\(\left\{{}\begin{matrix}2x^2-xy+3y^2=7x+12y-1\\x-y+1=0\end{matrix}\right.\)
Giải hệ:
\(\left\{{}\begin{matrix}x^2+y^2-x+y=2\\xy+x-y=-1\end{matrix}\right.\)
Giải hệ PT: \(\left\{{}\begin{matrix}x^2+y^2-xy+4y+1=0\\y\left(7-x^2-y^2+2xy\right)=2\left(x^2+1\right)\end{matrix}\right.\)
cho đẳng thức x^2-x+y^2-y=xy
chứng minh (\(\left(y-1\right)^2< \dfrac{4}{3}\)