Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phạm việt hùng

giải hệ pt

\(\left\{{}\begin{matrix}x^3+3xy^2=-49\\x^2-8xy+y^2=8y-17x\end{matrix}\right.\)

nguyễn viết hoàng
18 tháng 8 2018 lúc 11:32

nhân pt (2) vs 3 sau đó cộng pt (1) vs (2) ta đc

\(\left\{{}\begin{matrix}x^3+3xy^2=-46\\x^3+3xy^2+3x^2-24xy+3y^2=24y-51x-46\end{matrix}\right.\)

bây h ta chú ý tới pt dưới

\(x^3+3xy^2+3x^2-24xy+3y^2-24y+51x+46=0\)

\(\left(x+1\right)\left(x^2+2x+3y^2-24y+49\right)=0\)

\(\left(x+1\right)\left[\left(x+1\right)^2+3\left(y-4\right)^2\right]=0\)

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\x^3+3xy^2=-49\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\end{matrix}\right.\rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=-1\\y=-4\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1\\y=4\end{matrix}\right.\end{matrix}\right.\)

vậy hệ có 2 nghiệm


Các câu hỏi tương tự
:vvv
Xem chi tiết
Thơ Anh
Xem chi tiết
:vvv
Xem chi tiết
:vvv
Xem chi tiết
Giai Điệu Bạc
Xem chi tiết
Nguyễn Thị Ngọc Hân
Xem chi tiết
Trần Thu Trang
Xem chi tiết
Bánh Mì
Xem chi tiết
:vvv
Xem chi tiết