(1) <=> x=-1+y (3)
từ (2) và (3) suy ra:
\(\dfrac{2}{y-1}+\dfrac{3}{y}=2\)
<=>\(\dfrac{2y}{y\left(y-1\right)}+\dfrac{3\left(y-1\right)}{y\left(y-1\right)}=2\)
<=> \(\dfrac{2y+3y-3}{y\left(y-1\right)}=2\)
<=>\(\dfrac{5y-3}{y\left(y-1\right)}=2\)
<=> 5y-3=2y(y-1)
<=> 5y-3=\(2y^2-2y\)
<=>\(2y^2-7y-3=0\)
rồi bạn giải như bình thường là ra
ĐKXĐ:x khác 0 y khác 0
\(\left\{{}\begin{matrix}x-y=-1\\\dfrac{2}{x}+\dfrac{3}{y}=2\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}y=x+1\left(1\right)\\2y+3x=2xy\left(2\right)\end{matrix}\right.\)
Thay 1 vào 2 ta có:
2(x+1)+3x=2x(x+1)
<=>5x+2=2x2+2x
<=>2x2-3x+2=0
<=>2x2-3x+\(\dfrac{9}{8}\)+\(\dfrac{7}{8}\)=0
<=>2(x-\(\dfrac{3}{4}\))2+\(\dfrac{7}{8}\)=0(vô lí do \(2\left(x-\dfrac{3}{4}\right)^2\ge0\forall x\))
Vậy hệ vô nghiệm