Để pt có 2 nghiệm dương phân biệt thì:
\(\left\{{}\begin{matrix}\Delta=25-4\left(m-2\right)>0\\P=5>0\\S=m-2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 8,25\\5>0\\m>2\end{matrix}\right.\)
\(\Leftrightarrow2< m< 8,25\)
Theo vi-et thì ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m-2\end{matrix}\right.\)
Theo đề bài ta có:
\(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)
\(\Leftrightarrow4\left(\dfrac{1}{x_1}+\dfrac{2}{\sqrt{x_1x_2}}+\dfrac{1}{x_2}\right)=9\)
\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}+\dfrac{2}{\sqrt{x_1x_2}}=\dfrac{9}{4}\)
\(\Leftrightarrow\dfrac{5}{m-2}+\dfrac{2}{\sqrt{m-2}}=\dfrac{9}{4}\)
Đặt \(\dfrac{1}{\sqrt{m-2}}=a>0\) thì ta có
\(5a^2+2a-2,25=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=-0,9\left(l\right)\\a=0,5\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{\sqrt{m-2}}=0,5=\dfrac{1}{2}\)
\(\Leftrightarrow m-2=4\)
\(\Leftrightarrow m=6\)