\(x;y\ge0\)
Từ pt đầu ta có: \(\left(\sqrt{x}-2\right)^3=\left(\sqrt{y}\right)^3\Rightarrow\sqrt{x}-2=\sqrt{y}\)
Thế vào pt dưới:
\(x-2\sqrt{x}-1=2\left(\sqrt{x}-2\right)\)
\(\Leftrightarrow x-4\sqrt{x}+3=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1\\\sqrt{x}=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow\sqrt{y}=-1\left(vn\right)\\x=9\Rightarrow\sqrt{y}=1\Rightarrow y=1\end{matrix}\right.\)
Vậy hệ có cặp nghiệm duy nhất \(\left(x;y\right)=\left(9;1\right)\)