ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\y\ge0\end{matrix}\right.\)
- Từ PT ( I ) ta có : \(x-1+2\sqrt{xy}-2\sqrt{y}=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)+2\sqrt{y}\left(\sqrt{x}-1\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+1+2\sqrt{y}\right)=0\)
Thấy : \(\sqrt{x}+2\sqrt{y}+1\ge1>0\)
\(\Rightarrow\sqrt{x}-1=0\)
\(\Leftrightarrow x=1\)
- Thay x = 1 vào PT ( II ) ta được :
\(y=2019-x=2019-1=2018\)
Vậy ...