CHUYÊN ĐỀ PHƯƠNG TRÌNH - HỆ PHƯƠNG TRÌNH CHỌN LỌC
Bài 1: Giải phương trình ẩn x sau :
a) \(\sqrt{\frac{1}{x+3}}+\sqrt{\frac{5}{x+4}}=4\)
b) \(\sqrt[8]{1-x}+\sqrt[3]{1+x}+\sqrt[8]{1-x^2}=3\)
Bài 2: Giải hệ phương trình :
a) \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\frac{x^2+4y^2}{2}}+\sqrt{\frac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\frac{y}{2x+1}=\frac{\sqrt{2x+1}+1}{\sqrt{y}+1}\\4x^2+5=y^2\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}x^2-xy+y^2=3\\z^2+yz+1=0\end{matrix}\right.\)
P/s: ai có lời giải đúng, đẹp tặng 1GP mỗi phần.
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+1+y^2+xy=y\\x+y-2=\frac{y}{1+x^2}\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+8y^3-4xy^2=1\\2x^4+8y^4-2x-y=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x^2+y^2=\frac{1}{5}\\4x^2+3x-\frac{57}{25}=-y\left(3x+1\right)\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}\sqrt{12-y}+\sqrt{y\left(12-x\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
Giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{2x^2+1}}+\dfrac{1}{\sqrt{2y^2+1}}=\dfrac{2}{\sqrt{1+2xy}}\\\sqrt{x\left(1-2x\right)}+\sqrt{y\left(1-2y\right)}=\dfrac{2}{9}\end{matrix}\right.\)
Giải các hệ PT sau:
a) \(\left\{{}\begin{matrix}2x^2-3xy=y^2-3x-1\\2y^2-3xy=x^2-3y-1\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^3-2y=4\\y^3-2x=4\end{matrix}\right.\)
c) \(\left\{{}\begin{matrix}\sqrt{x+1}-\sqrt{7-y}=4\\\sqrt{y+1}-\sqrt{7-x}=4\end{matrix}\right.\)
d) \(\left\{{}\begin{matrix}2x^2=y+\frac{1}{y}\\2y^2=x+\frac{1}{x}\end{matrix}\right.\)
Giải hệ pt:
a)\(\left\{{}\begin{matrix}x^2+y^2+x+y=18\\x\left(x+1\right).y\left(y+1\right)=72\end{matrix}\right.\) b) \(\left\{{}\begin{matrix}\frac{1}{x}+\frac{1}{y+1}=1\\3y-1=xy\end{matrix}\right.\) c)\(\left\{{}\begin{matrix}2x+3y=xy+5\\\frac{1}{x}+\frac{1}{y+1}=1\end{matrix}\right.\)
d)\(\left\{{}\begin{matrix}\sqrt{\frac{x}{y}}-3\sqrt{\frac{y}{x}}=2\\x-y+xy=1\end{matrix}\right.\) e)\(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
HELP ME :((
giải hệ phương trình \(\left\{{}\begin{matrix}\frac{\sqrt{x+2}}{3}+\frac{1}{2x-y}=\frac{4}{3}\\2\sqrt{x+2}-\frac{3}{y-2x}=5\end{matrix}\right.\)
giải hệ phương trình \(\left\{{}\begin{matrix}|x-1|+\frac{2}{\sqrt{y+1}}=4\\|2x-2|-\frac{1-2\sqrt{y+1}}{\sqrt{y+1}}=0\end{matrix}\right.\)
Giải hệ phương trình sau: \(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^2\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}+x^2\left(x^4-2x^2-2xy^2+1\right)=0\end{matrix}\right.\)
Giải hệ phương trình:
a, \(\left\{{}\begin{matrix}\frac{x}{2}=\frac{y}{3}\\\frac{x+8}{y+4}=\frac{9}{4}\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}0,75x-3,2y=10\\x\sqrt{3}-y\sqrt{2}=4\sqrt{3}\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}\frac{2x+3}{y-1}=\frac{4x+1}{2y+1}\\\frac{x+2}{y-1}=\frac{x-4}{y+2}\end{matrix}\right.\)
Giúp tớ với,tớ sắp phải nộp bài cho cô rồi