1) \(\left\{{}\begin{matrix}xy+x+y=x^2-2y^2\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}2x^2+y^2-3xy+3x-2y+1=0\\4x^2-y^2+x+4=\sqrt{2x+y}+\sqrt{x+4y}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}y^3-4y^2+4y=\sqrt{x+1}\left(y^2-5y+4+\sqrt{x+1}\right)\\2\sqrt{x^2-3x+3}+6x-7=y^2\left(x-1\right)^2+\left(y^2-1\right)\sqrt{3x-2}\end{matrix}\right.\)
Giải các hệ
\(\left\{{}\begin{matrix}\sqrt{x+y}+\sqrt{2x+y+2}=7\\3x+2y=23\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^2+y+x^3y+xy^2+xy=\frac{-5}{4}\\x^4+y^2+xy\left(1+2x\right)=\frac{-5}{4}\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\left(x^2+1\right)+y\left(x+y\right)=7y\\\left(x^2+1\right)\left(x+y-2\right)=-y\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x\left(x+y+1\right)=3\\\left(x+y\right)^2-\frac{5}{x^2}=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\frac{1}{2x}+\frac{x}{y}=\frac{3x+3\sqrt{y}}{4x^2+2y}\\4x+y=\sqrt{2x+6}-2\sqrt{y}\end{matrix}\right.\)
Giải hệ \(\left\{{}\begin{matrix}y^2-5\sqrt{x}+5=0\\\sqrt{x+2}=\sqrt{y^2+2y+3}-\frac{1}{5}y^2+y\end{matrix}\right.\)
giải hệ phương trình: \(\left\{{}\begin{matrix}\dfrac{1}{\sqrt{x}}+\dfrac{y}{x}=2+\dfrac{2\sqrt{x}}{y}\\2y^2-2y+1=3xy\end{matrix}\right.\)
giải hệ phương trình : \(\left\{{}\begin{matrix}x^2+xy-2y^2+3y=1\\x\sqrt{x-y}-x+y=1\end{matrix}\right.\)\(\left(x,y\in R\right)\)
Giải hệ pt sau:\(\left\{{}\begin{matrix}x\sqrt{y}+y\sqrt{x}=6\\x^2y+xy^2=20\end{matrix}\right.\)
Giải giúp mình hệ này bằng phương pháp liên hợp với ạ
\(\left\{{}\begin{matrix}2\sqrt{x^2+3}-2\sqrt{y^2+5}=-y\\3\sqrt{x^2+3}-\sqrt{y^2+5}=3x\end{matrix}\right.\)