Gải hệ phương trình: \(\left\{{}\begin{matrix}x^3=3x+8y\\y^3=8x+3y\end{matrix}\right.\).
giải hệ phương trình sau
\(\left\{{}\begin{matrix}x^3=3x+8y\\y^3=3y+8x\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x^3-y^3+8x-8y=3x^2-3y^2\\\left(5x^2-5y+10\right)\sqrt{y+7}+\left(2y+6\right)\sqrt{x+2}=x^3+13y^2-6x+32\end{matrix}\right.\)
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}x^2=y^3-4y^2+8y\\y^2=x^3-4x^2+8x\end{matrix}\right.\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}\left(x^2+y\right)^3+\left(y^2+x\right)^3=6\left(x^2-x\right)-6\left(y^2-y\right)\\8x^4+8y^4+8x^2+8y^2=9-16xy\left(x+y\right)\end{matrix}\right.\)
Giúp mình vs ạ...giải hệ pt ạ
Giải hệ
\(\left\{{}\begin{matrix}x^3+7y=\left(x+y\right)^2+x^2y+7x+4\\3x^2+y^2+8y+4=8x\end{matrix}\right.\)
1)\(\begin{cases}y^3\left(3x^2-4x-23\right)=8-8y\\y^2\left(x^3+10x+27\right)=8x+6y\end{cases}\)
2\(\begin{cases}2\sqrt{x^2+5x-y+2}-2=\sqrt{y^2+8x}+x\\2y-\sqrt{x+1}=x+5\end{cases}\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(x+y-3\right)^3=4y^3\left(x^2y^2+xy+\frac{45}{4}\right)\\x+4y-3=2xy^2\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+7y=\left(x+y\right)^2+x^2y+7x+4\\3x^2+y^2+8y+4=8x\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}2x+5y=xy+2\\x^2+4y+21=y^2+10x\end{matrix}\right.\)