Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
\frac{2x}{x+1}+\frac{y}{y+1}=\sqrt{2}(1)\\
\frac{2x}{x+1}+\frac{6y}{y+1}=-2(2)\end{matrix}\right.\)
Lấy \((2)-(1)\Rightarrow \frac{5y}{y+1}=-2-\sqrt{2}\)
\(\Rightarrow 5y+(2+\sqrt{2})(y+1)=0\)\(\Rightarrow y=\frac{-2-\sqrt{2}}{7+\sqrt{2}}\)
Thay \(\frac{y}{y+1}=\frac{-2-\sqrt{2}}{5}\) vào PT (1) thu được:
\(\frac{2x}{x+1}+\frac{-2-\sqrt{2}}{5}=\sqrt{2}\)
\(\Rightarrow \frac{x}{x+1}=\frac{1+3\sqrt{2}}{5}\Rightarrow x=\frac{1+3\sqrt{2}}{4-3\sqrt{2}}\)
Vậy......