\(HPT\Leftrightarrow\left\{{}\begin{matrix}2x^2+2y^2-6x+8y=2\\3x^2-2y^2-9x-8y=3\end{matrix}\right.\)
\(\Leftrightarrow5x^2-15x=5\)
\(\Leftrightarrow x^2-3x-1=0\)
\(\Delta=\left(-3\right)^2-4.\left(-1\right)=13\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{matrix}\right.\)
Thế \(x=\frac{3+\sqrt{13}}{2}\)vào phương trình đầu ta được :
\(\frac{22+6\sqrt{13}}{4}+y^2-\frac{9+3\sqrt{13}}{2}+4y=1\)
\(\Leftrightarrow y^2+4y=0\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-4\end{matrix}\right.\)
Thế \(x=\frac{3-\sqrt{13}}{2}\) vào phương trình đầu ta được :
\(\frac{22-6\sqrt{13}}{4}+y^2-\frac{9-3\sqrt{13}}{2}+4y=1\)
\(\Leftrightarrow y^2+4y=0\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-4\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}\left(x;y\right)=\left(\frac{3+\sqrt{13}}{2};0\right)\\\left(x;y\right)=\left(\frac{3+\sqrt{13}}{2};-4\right)\\\left(x;y\right)=\left(\frac{3-\sqrt{13}}{2};0\right)\\\left(x;y\right)=\left(\frac{3-\sqrt{13}}{2};-4\right)\end{matrix}\right.\)