Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
poppy Trang

giải hệ phương trình:

\(\left\{{}\begin{matrix}\sqrt[3]{1+x}+\sqrt{1-y}=2\\x^2-y^4+9y=x\left(9+y-y^3\right)\end{matrix}\right.\)

Diệu Huyền
3 tháng 2 2020 lúc 0:12

\(\left\{{}\begin{matrix}\sqrt[3]{1+x}+\sqrt{1-y}=2\left(1\right)\\x^2+y^4+9y=x\left(9+y-y^3\right)\left(2\right)\end{matrix}\right.\)

Từ: \(\left(2\right)\Rightarrow x^2-y^4+9y=x\left(9+y-y^3\right)\)

\(\Leftrightarrow\left(x-y\right)\left(x+y^3-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=y\\x+y^3-9=0\end{matrix}\right.\)

Vì: \(\left\{{}\begin{matrix}y\le1\\\sqrt[3]{1+x}+\sqrt{1-y}=2\end{matrix}\right.\Rightarrow\sqrt[3]{1+x}< 2\Leftrightarrow x< 7\)

\(\Rightarrow x+y^3-9< -1< 0\Rightarrow x+y^3-9=0\left(vn\right)\)

Ta chỉ cần giải trường hợp \(x=y\) . Thế vào pt ban đầu ta được: \(\sqrt[3]{1+x}+\sqrt{1-x=2}\)

Đặt: \(\left\{{}\begin{matrix}a=\sqrt[3]{1+x}\\b=\sqrt{1-x}\left(b>0\right)\end{matrix}\right.\) Ta được:

\(\left\{{}\begin{matrix}a+b=2\\a^3+b^2=2\end{matrix}\right.\Rightarrow a^3+\left(2-a\right)^2=2\Leftrightarrow a^3+a^2-4a+2=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+2a-2=0\right)\)

\(\Rightarrow\) Nghiệm của pt đầu: \(\left\{{}\begin{matrix}x=0\\x=-11+6\sqrt{3}\\x=-11-6\sqrt{3}\end{matrix}\right.\)

Vậy hệ đã cho có 3 nghiệm: \(\left\{{}\begin{matrix}x=y=0\\x=y=-11+6\sqrt{3}\\x=y=-11-6\sqrt{3}\end{matrix}\right.\)

Khách vãng lai đã xóa
Hihihihi Hahaha
2 tháng 2 2020 lúc 23:28

Xét 5 tế bào của cùng một loài có 2n = 6 đều thực hiện nguyên phân số lần bằng nhau, môi trường cung cấp 90 NST đơn. Số lần nguyên phân của mỗi tế bào trên là bao nhiêu

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đức Mai Văn
Xem chi tiết
Lalisa Manobal
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết
Đức Mai Văn
Xem chi tiết
poppy Trang
Xem chi tiết
poppy Trang
Xem chi tiết
poppy Trang
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Hải Yến Lê
Xem chi tiết